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1. Introduction

Let L = (p1, P2, ..., Pa) be a list of pieces with sizes in the interval (0, 1]. The one-dimensional din
packing problem is to pack the pieces into a minimum number of bins in such a way that the sum of the
piece sizes in each bin is at most one. As this problem is known to be NP-complete {GJ79, K72], much
work has been done in the study of approximation algorithms; a survey of these results is given in

[CGJs3].

For any (heuristic) bin packing algorithm A, let A(L) denote the number of bins used by algorithm
A in packing list L, and let OPT(L) denote the minimum (optimum) number of bins required to pack

list L. We are concerned with the asymptotic worst-case performance ratio

Ry = li _A(LL.

a0 OPT(L)=a OPT(L)"
Thus, we would like to construct an algorithm A which has a performance ratio close to one. Intuitively,

we want an algorithm that minimizes, for large lists, the worst-case percentage of excess bins used com-
pared to an optimal packing.

In this paper we concern ourselves with algorithms for which the pieces in list L are available one at
a time, and each piece must be packed in some bin before the next piece is available; such an algorithm is
referred to as on-line. Previously known on-line algorithms include the O(n) Next-Fit (NF), and the
O(n log n) First-Fit (FF) [J73, J74, JDUGGT74), the O(n) Harmonic (H) [LL83|, the O(n log n) Refined
First-Fit (RFF) [Y80], and the O(nlogn) Doubly-Refined First-Fit (DRFF) [B79b]. These algorithms
have the following performance ratios: Ryp == 2, Rypp = 1.7, Ry = 1.692.., Rppr = 1.6*, and
Rpprr < 1.64. In this paper we present a new linear-time algorithm which we call Modified Harmonic

(MH) and show that Ryy < 1.61(561)".

On the lower bound side, Yao [Y80] showed that for any on-line algorithm, the performance ratio is

at least 1.5. This lower bound was further improved to 1.536... independently by Brown [B79a and Liang
|L8o).
It should be observed that considerably better performance ratios exist for algorithms which are not

on-line. For instance, running the First-Fit Algorithm on pieces that have been ordered by decreasing size

gives the First-Fit Decreasing (FFD) Algorithm [J73, J74, JDUGGT74|, for which Rppp == % = 1.2°.
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Friesen and Langston [FrL81] devised a hybrid algorithm with a performance ratio of 1.2, and Garey and

Johnson [GJ81] modified First-Fit Decreasing to obtain an algorithm (MFFD) with
Rygprp = -% = 1.183°. Fernandez de la Vega and Lueker [FeL81] showed that for every ¢ > 0, there is

a linear-time algorithm A[e] with R,q < 1+ ¢. More recently, Karmarkar and Karp [KK82] presented

an algorithm that is asymptotically optimal; i.e., has performance ratio one.

In Section 2, we present our Modified Harmonic Algorithm, and describe the packings produced. In
Section 3, we use a novel weighting function scheme to analyze the algorithm. In Section 4, we character-
ize a large class of linear-time on-line algorithms for which the performance ratio is at least

%+ %= 1.61°, suggesting that it may be difficult to improve on our Modified Harmonic Algorithm if

we restrict ourselves to linear time. In Section 5, we summarize our results and make some further obser-

vations.

2. The Modifled Harmonie Algorithm

The Modified Harmonic Algorithm (MH) is based on three previously known on-line algorithms: the
Refined First-Fit Algorithm of Yao [Y80], the Next-Fit Algorithm of Johnson [J73], and the Harmonic
Aigorithm of Lee and Lee [LL83]. Because the latter two algorithms are needed to describe our algo-

rithm, we first briefly describe them.

The Next-Fit Algorithm operates as follows. Initially, the empty bins are indexed as bin,, bin., ..
Piece p, is packed in bin,. Suppose that p,, p,, ..., i, have been packed, and p; is the next piece to be
packed. Let j be the largest index such that bin; is nonempty. If p; will it in bin;, then p; is packed in
biny; otherwise p; is packed in bin,, .

The Harmonic Algorithm is based on the harmonic partition of the interval (0, 1):

(0, 1] = L'Jl,.. where I; = (1/(j + 1), 1/j], 1 € j < k, and I, = (0, 1/¥],
J=1

for some k > 1. A piece p is called an /;-piece if p € I;, 1 < j < k. Initially, the set of empty bins is
divided into k infinite classes: bins of type B;, 1 < j < k. A bin of type B; is used to pack only /;-

pieces. Note that j I;-pieces can be packed in a bin of type B; for 1 < j < k. Suppose that
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P1» P2, ---» Pi-1 have been packed, and p; is the next piece to be packed. If p, is an I, -piece for some j,
1 < j <k, then it is packed in a nonempty bin of type B; that contains fewer than j pieces, if one
exists; if no such bin exists, then p; is packed in an empty bin of type B;. If p; is an I, -piece, then it is

packed in bins of type B, by Next-Fit.

Now we are ready to describe the Modified Harmonic Algorithm. The algorithm is based on the fol-

lowing partition of the interval {0, 1]:

k

=1

where ;= (1 -y, 1], L= (y,1/2), I, = (1/2, 1 - ¢}, I, = (1/3, ¥],

I =(1/(j + 1),1/j],3 € j < k, and [ = (0, 1/k],
for some y and k, 1/3 < y < 1/2 and k£ > 3 (exact values for y and k will be given in Section 3). A
piece p is called an

I,-pieceitp € T,

TI;-pieceif p € T,

I;-pieceif p € I; forsome j,1 < j < k.
Initially, the set of empty bins is divided into k£ + 2 infinite classes: bins of type B,, B, and By,
1 < j < k. A bin of type B, is used to pack only I;-pieces, a bin of type B, is used to pack only I;-
pieces, and a bin of type B;, 2 < j < k, is used to pack only /;-pieces. All I, -pieces are packed in bins

of type B,. In addition, some of the /,-pieces for 2 < p < 3 or 6 < p < k - 2, are also packed in bins

of type B,. In particular, for each p, a fixed fraction ;l- (values for the m,'s will be given in Section 3)
’

of the I,-pieces are packed in bins of type B,; if there are a sufficient number of /,-pieces, then each bin
of type B, will also contain an I,-piece. Thus, each nonempty bin of type B, will contain an I,-piece
and/or I,-pieces (at most max (1, |pyj) of them) for one p, 2 < p < 30r 6 < p < k - 2. The algorithm
packs a list in such a way that, at any stage in the packing:

(1) each nonempty bin of type B, contains 1 I;-piece, .

(2) each nonempty bin of type B, (except possibly the last one) contains 2 I -pieces,

(3) each nonempty bin of type B;, 2< j < k, (except possibly the last one) contains j I; -pieces,

k-1
k

(4) each nonempty bin of type B, (except possibly the last one) is at least full,
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and
(5) each mnonempty bin of type B,
(5} contains only an I,-piece,
(i) contains only an [;-piece or an [;-piece,
(i15) contains an /,-piece together with an J;-piece or an I3-piece,
(iv) contains |py] I,-pieces for some p, 6 < p < k - 2,
(v) contains an I, -piece, and loyl 1,-pieces for some 9,6 < p < k -2,
(vi) contains at least one, and at most loy) -1 1,-pieces forsome p, 6 < p < k - 2,
or
(vii}) contains an /,-piece together with at least one, and at most byl -1 1,-pieces for
some p, 6 < p < k-2
Moreover, if there is a bin as in (i), then there can be no bins as in (ii), (sv), or (vi). Also,
for each p, 6 < p < £ - 2, the number of bins as in () plus the number of bins as in (v¥) is

at most one.

When we say Aarmonic pack (p;, I;), where p; is an [, -piece, 2 < j < k, we mean:

if there exists a nonempty bin of type B; containing fewer than j I, -pieces
then pack p; in that bin

else pack p; in an empty bin of type B;.

We now give a precise statement of our algorithm.
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Modifled Harmonic Algorithm

fori:=1ton do
begin

casge p; in

L:

I (j =4,50rk-1):
lg!
11:

I,6<p<k-2):

end.

: pack p; in an empty bin of type B,

if there exists a bin of type B, containing only one I,-piece
then pack p; in that bin
else pack p; in an empty bin of type B,

harmonic pack (p;, 1;)

pack p; in bins of type B; by Next-Fit

if there exists a nonempty bin of type B, that does not contain an /,-piece
then pack p; in that bin

else pack p; in an empty bin of type B,

. if p; is the (mr)™ I,-piece to arrive thus far for some integer r > 1

then if there exists a bin of type B, containing only an I,-piece
then pack p; in that bin
else pack p; in an empty bin of type B,
else harmonic pack (pi, [,)
if pi is the (m,r)“ 1,-piece to arrive thus far for some integer r > 1
then if there exists a bin of type B, containing at least one, and at most
loy} - 1 1,-pieces
then pack p; in that bin
else if there exists a bin of type B, containing only an /,-piece
then pack p; in that bin
else pack p; in an empty bin of type B,

else Aarmonic pack (p;, 1,)
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It is easy to see that the Modified Harmonic Algorithm runs in linear time and uses linear space.
Note that in the above algorithm, we had implicitly assumed that the m,’s are integers. The values we

will be specifying in Section 3 will not be integers. In this case we iequire that at any stage if a, is the

a
number of /,-pieces that have been packed, then [;’—J of them have been packed in bins of type B,. It
. ]

is easy to modify the algorithm accordingly.

3. Analysis of the Algorithm

In this section, we use weighting functions to analyze the performance of the Modified Harmonic
Algorithm. Throughout this section we shall be considering only the nonempty, i.e. packed, bins. The
weight of a bin is defined to be the sum of the weights of all the pieces in the bin. We shall assign
weights to pieces in such a way that the average weight of all but a constant number of bins packed by

our algorithm is at least one.

Let @, and @, be the weights of an I;-piece and an I,-piece, respectively. Let w; be the weight of

an [;-piece, 1 < j < k, and let wi(p) be the weight of an I, -piece p.

Since a bin can contain ope I;-piece, two T,-pieces, four I,-pieces, five I5-pieces, or k -1 [, ,-

pieces, we have

E-1°
k-1
k

W =

Since a2 bin of type B, will be at least full, we assign to an [, -piece p the weight

k
w(p) =77




weight of piece 2 for

Interval containing piece ¢
a>0 a=0
Tl : (l -V l] 1 1
I: (1/2,1-y] 1 0
1 1
L: (v, 1/2 2 >
1 1 1 1
1 1 1 2
I3: (1/4, 1/3] 3 3m; 3 + 3o
1 1
1,: (1/5, 1/4] y "
1 1
Is: (1/6, 1/5] 3 <
1 1 1 1 1
fo: 01/7.1/4) 6 6m, 6  6ms * mq 6]
1 1 1 1 1
1,: (1/(p+ 1)1 ——— i 1
1 1 1 1 1
Doz (1/(k - 1), 1/(k -2 - - +
be: (LA h ) k-2 (E-2)my, k-2 (k-2)m,  m_lk-2)yl
Ley: (1k, 1/(k - 1)) 1 _1_
k-1 - ’ E-1 E-1
k k
L : (0,1/k] o1 1

Table 1.

Weighting functions for « > 0 and a = 0.
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Recall that, for 2 < p < 30r6 < p < k - 2, some of the I -pieces are packed in bins of type B,
The weights we assign to the /,-pieces and /,-pieces depend on the input list L. Let a be the number of
bins in the packing of L produced by the Modified Harmonic Algorithm that contain only an [,-piece.

The weights we assign to the /,-pieces and /,-pieces depend on whether a > 0 or a = 0.

For a > 0, there are bins containing only an I,-piece; moreover, every bin of type B, contains an
I,-piece. We assign weights to the /,-pieces and [,-pieces in such a way that the average weight of all

bins of types B, and B, is one:
Wy = ly

wy=2f1-|rr2a<p<3or6<p<i-2
P ? m' -— - — -_—

For a = 0, not all the bins of type B, contain an /,-piece. Again, we assign weights to the /,-
pieces and /,-pieces in such a way that the average weight of all bins of types B, and B, is one:

w1=0,

o= L )r oy wresess
4 4

1 1 1
w,=—fl-—¢{+ for6 < p< k-2
’ [ p] m,lpy]

Table I summarizes the above weighting functions.
We make use of these weighting functions to analyze our algorithm’s performance. Letting W(l)

be the sum of the weights of all the pieces in list L , we show in Lemma 1 that

ME(L) < W(L) + 2k -1,

and show in Lemma 2 that

W(L) < [%+ %+ -2—;?]01’7(“.

Combining these results gives us the following bound on our algorithm's performance:

1

3 1
Ry < +9+222.

2

In Lemma 3, we prove that this bound is essentially tight. The results of these three lemmas are




combined to give Theorem 1.
Lemma 1, Forany list L, MH(L) < W(L)+ 2k -17.

Proof. Let §, and §; be the number of bins of type B; and By, respectively, and let b, be the number of
bins of type B;, 1 < j < k. It is clear that
[
MH(L)=15;+ b+ Y8,.
j=t
Let W, and W, be the sum of the weights of all the I, -pieces and I;-pieces, respectively, and let W, be

the sum of the weights of all the /,-pieces, 1 < j < k. It is clear that

W(L)= W1+ Wz'f’ z.:W,

=1
It is easy to see that we have constructed the weighting functions in such a way that each bin

(except possibly the last one) of type B,, B,, B,, B, or B;_,, has weight precisely one. So

Fx=‘le

L<W,+1,
b < W+ 1,
by < Wy + 1,

6._1 < Wk-l + 1.
k-1

Since each ‘bin of type B; (except possibly the last one) must be at least full, its total weight is at

least one, and s0

b < W+ 1.
Let a, be the number of /;-pieces, 1 < j < k. To analyze the weights of bins of types B, and B,,
2<p<3or6<p< k-2 we consider separately the two weighting functions, and show that the

lemma holds both for a > 0 and a = 0.

Case /. a > 0. Every bin of type B, has an [, -piece, and so

6) == w,.
For2 < p<30r6 <p< k-2 notall of the /,-pieces are packed in bins of type B, In particular,




- g
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we have

=W, + 1.
Summing all the inequalities for Case 1, we get
MH(L) < W(L)+ &

Case 2. a ==0. A bin of type B, containing an /,-piece for some p, 2 < p <3 0r6<p< k-2, is
called a bin of type B,,. Since a = 0, every bin of type B, is of one of the B, , types. Let 3, , be the

number of bins of type B,, Clearly b, = );b,,. Noting that for a = O the weight of an /,-piece is 0,
’

the weights of the /,-pieces must “‘compensate”. For 2 < p < 3, we have

v BB B

=W, + L

For 6 < p < k - 2, each bin (except possibly the last one) of type B, , contains leyl 1 o-pieces. As above,

et = “ 7ﬂ fwl':ﬂ
<»[‘f w) =

1 1 1
=a,1—- + + 2
’[p m, M,lpvJ]

we have




=W, + 2
Summing all the inequalities for Case 2, we get

MH(L)< W(L)+ 2 -7. []

Lemma 2. Consider the weighting functions specified in Table I for a > 0 and a = 0. Let y = %,

E=38 ma=0 my=12 and m, = LE=Me* D ST+ 1) g0 )<k 2 (sce Table ).

k-p-1 37-p
Then
3 1 1
W) < [2 + ° + 222]OPT(L).
Proof. Consider a bin B in the optimal packing, and let 2, > 2, > - - - > g be the pieces packed in
it, 5, + 22+ - - + 8 < 1. Let w(s;) be the weight of a piece #;, and let w(B) be the weight of B.
It is clear that
w(B) = w(s)) + w(e) + - + w(s).

We shall prove that

wB)< 2+ 24+ L
both for a > 0 and a = 0.
The proof is done by cases, depending on the sizes of some of the largest pieces in B. Tables IIl and
IV summarize the cases for @ > 0 and a == 0, respectively. Columns »#;, 2,, and 2, indicate the intervals
containing the first, second, and third largest pieces in B. For convenience, we let /; (s > r) denote one
of the intervals I,, 1,4, ..., I, or the “interval” [0]; i.e., no piece at all. Column ¥ gives an upper bound

on the remaining space left in the bin after packing the pieces of sizes specified in columns »,, #,, and ¢;.
To determine an upper bound on w(B), we find it useful to compute upper bounds on -'ﬂ'ﬂ- for
each possible piece size # (see Table II). In particular, we shall make use of the fact that

w(s,)
s

]
Y uls) < ,,I‘_J;r [é‘f’s‘«

j=i
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a>0 a=0
Interval containing piece # w(s) .'EEL). w(s) _tv_(.i)_
(upper bound) (upper bound)
L: (1-y,Y 1 %— 1 3_?3_
L: (1/2,1-y] 1 2 0 0
L: (v.1/2 % % % ;_;5_2.
I: (1/3, ] i - 5 £
Iy: (1/4,1/3) % .16‘_ 'i% _;1
L: (1/5,1/4] % .i_ % %
Is: (1/8, 1/5) % % % %
Io: (1/7, 1/6) 7_.3%7 13_3}_ 1 4l(‘)‘;? 21‘0;’17
Ie: (13, 1/12) 1333337 33%. 351?37 71_-7'73_7'
Ig: (1}19, 1/18) 193.837 % 3_% 32:%7—
I (1/20, 1/19) mafa'r %:_ 357‘137 %
s (k- 1), 1/(k - 2) 3,,3;83, 3 31_953_7 %
By (1, 1/(k - 1) = 2 + 2
I : (0, 1/k] is:;. %3_;;. _:;, ?3:_

!
Note: For am=0, s €/, and o' €1;,6< j < j' <k, upper bound on E&ﬂ. > upper bound on _W_g__)__

Table 1. Weight summary for all pieces #, when y = -62:5—4’ k=38, m, =9 mg =12 and

- lE-1Mo+ 1) _ 37(p+ 1) for6<p< k-2

M 1 37-p
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w(B)
8 82 83 ¥
w(s)) + w(e,)) + -+ w(s)
(upper bound)
1 77 1 1 77 38
I L - 2 V=581 <6 1+ 2+ &'
1 38
Lol I, - ry l+—+—‘§
1 11 1 1 38
Lol Iy I, 20 1+ §+ T+ '3
. 1 11 1 6
Lol Iy I; (5 29) ry 1+ 5+t %%
1 1 1 1 38
forh h L 10 I A T
. 3 3
Lol I, Ii(7 25) ) 14 —+ 1—0.3
. 1 1 6
) > - — —lt —
llorrl 1)(1_5) 2 1+2 5
Lorli(j 2 2) - - 1 1 —

Table Ill. List of cases proving w(B) < -;—+

1

9

1
— 0.
+ 202 for a >




=15

—~mup N e Gy TEE S W T W S

w(B)
N 8, 83 ¥
wis) + w(e)+ - + w(s)
(upper bound)
1 1 1 5 13 1 38
- — e — oy —— 1 - v Tos | am
4 I Ls V-3 19 " 6sa Yot Gear oW
_ 1 37 5 . 37 o284
T, I, Ii(j 219) V-3 ™ e 1+ 5t &1 7emt
) 265 265 14
(5> - - = rrYRery
I, I (5 23) y 684 l+684‘9
1 1.5
ll = - E- ?.-3-
154 _ 1 1,1 . 154 107
]; Tz - l—2y=684<4 2+2+684.2‘37
1 5.5 . 7 . 111
Lorl, I, £ 12 9 + 9 + 18 + 12 * 4237
. 1 5.5 . 1. 107
Lo, A L >4 2 ot ot 3" %o
. 2 5 2_ UM
Lotl, 523 - 3 9t 39
1529 - - 1 Sy
Table IV. List of cases proving w(B) < -3-+ 1, L for a = 0.
2 9 222

Column w(B) in tables Il and IV specifies an upper bound on w(s,) + w(e;) + * + w(s), calcu-

lated by taking w(s)) if #, is specified, plus w(s;) if o, is specified, plus w(e3) if ¢y is specified, plus

¥ max -"LL'-)-.
<r 2
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For example, consider the case for a > 0, with s, € /; and 52 € I;. Then

Tel-(o+ 8)<1-(1/2+ p)=1/2-y = ;’; < 1/6.

(8.)

Thus, we know that each of s, ..., & must be smaller thaa 1/6, and so (from Table I) —— < —3;1— for
3 < i €t. This gives

w(B) = w(e) + wie) + 3 w(s)

As another example, consider the case for a > 0, with s, € [, and 8, € [; (j 2 5). Then 2, > 1/2,

and ¥=1-#, < 1/2. The ¥ portion of the bin has no piece larger than 1/5, and so L"-(’ﬂ- < % for

any piece in B other than #,. This gives

w(B) = w(s,) + z:w(v.)< 14 ?-%< %+ %

As another example, consider the case for a = 0, with #, € I, #; € I3, and 83 € I5. Then

Toml-(o,+ 824 03) <1-(1/34 1/3+ 1/4) = 1/12.

w(%) ) 177

Thus, we know that each of ¢, ..., & must be smaller thaa 1/12, and so —— . -;37— for4<i <t
i

This gives

w(B) = w(ey) + wle) + wles) + Y w(s,)

=4
5 5 7 . 111
<otot it rew
3 1
<2*9%

Tables Il and IV enumerate all possible cases, and it is easily checked that the values in the w(B)

columa are all at most % + ; + E Thus, the result of the lemma follows. []
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Lemmas 1 and 2 guarantee that the performaace ratio of MH is less than %+

now show that this bound is essentially tight.

1
o ¥ 22

Lemma 3. Letys%,ksas, m; =9, mg=12, and m, = F-po1

6 <p< k-2 Then

3 1. 1 1
R 25+ 5+ 30 - Wz

Proof. We shall exhibit lists L with arbitrarily large OPT(L ) such that

MH(L) 3 1 1 1
OPT(L) ~ 2" 9 222 87012

Let n be a multiple of 24,675,300, and let

Ly=(py, p3) - Pa)
Lz =(q1, 92, .. 0a)r
Ly=(ty, t5, ..., ta),
Ly=(uy, 8y ..., uz),

and

L; = (0‘, Ugy vony U.),

where

and

l —
26,676

for some ¢, 0 < e < 107%°. Let L be the list obtained by concatenating

U = 5‘:

L = L‘LgL‘L.Ls.

37 -»

these lists;

We

G-Dp+1) _ 3+ 1)

ie.,
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Note that p; + ¢; + t; + u; + u; + v; = 1. Hence, the packing in which each bin contains a p;
piece, a ¢; piece, a I; piece, two u; pieces, and a v; piece is an optimal packing, and so OPT(L) = n.

Now consider the packing produced by our algorithm. Note that m,; = 4—:‘— and mgqy = %979-

Since [25y] = 9 and [26y] = 10, 9 t; pieces or 10 u; pieces can be packed in the same bin with a p,

piece. Thus, the packing produced by our algorithm consists of

n 2n 64,702n . .. .
- - ¢
n omy ~ Tomn = 64,935 bins, each containing 1 p; piece,
N 2n bins, each containing 1 p; piece, and 9 ¢, pieces
Omy | 1,443 ' ' ' ' ’
2n _ Aln bins, each containing 1 p; piece, and 10 u; pieces,
n 1 19n .. .. .
= |- e | = @ bins, each containing 25 ¢; pieces,
2n 1 76n

Ty 1- -;"-;- = 500 bins, each coutaining 26 u; pieces,

% bins, each containing 2 ¢; pieces,
and

n . .. .
26,676 bins, each containing 26,676 v; pieces.

Summing, we obtain

3,1, 1 _1
MH(L) [2 Tet e 987,012]"'
or
MA@ 3,1, 1 1
opT(L) 2t vt 2 " wmoz

Since OPT(L) = n can be arbitrarily large, the result follows. []

Note that 987,012 = 26,676 ¢37. The discrepancy of 1/987,012 in our analysis is due to the weights we

assigned to the /, -pieces. For the list considered in the proof of Lemms 3, bins of type By are completely

k-1 e,

packed, instead of being oaly
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Lemmas 1, 2, and 3 are summarized by the following theorem.

G-p+1) _37p+1)

Theorem 1. Let y = E—, k=238 m=9 my=12 and m, =

684 E-p-1
6 <p<L k-2 Then

3. 1. 1 1 3 1 1

sS4y A < AU SUNR

2t ot 22wz SR < T¥ gt o

e,

1.6156146 < Ruy < 1.61(561)".

4. A General Lower Bound

37-»p

for

In this section, we present a lower bound for a class of algorithms, which includes the Modified Har-

monic Algorithm presented in Section 2.

Let C be the class of algorithms which behave as follows. If 4 € C, then A divides the interval

(0, 1] into disjoint subintervals, including Iy == (1 -y, 1|, 7, = (1/2, 1 - y], I = (y, 1/2], I, = (1/3, ¥],

and Iy = (0, )], for some y and ), 1/3 < y < 1/2 and 0 < ) < 1/3. Pieces are classified according to

the intervals to which they belong. The packing produced by A4 must obey the following rules:

(R1) The number of bins which contain only one I,-piece (with or without pieces of other types) is a

fixed fraction 1/m (m aneed not be an integer, and if this fraction is zero, we take m to be co) of

the total number of I,-pieces in the input list.
(R2) No bin may contain
(5) an Ij-piece and aa I,-piece,
or

() sa I,-piece snd an I;-piece.

(R3) No bia msay contain an /, -piece together with an T,-piece, 1,-piece, T, -piece, or an I,-piece.

Note that the Modified Harmonic Algorithm is in C. Also note that the above rule R 2 rules out

packing /U T, -pieces with I-pieces, or I,-pieces with I, UT,-pieces, by First-Fit (O(n Iy n) time). We

bave the following lower bound on the performance of any algorithm in C'.
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Theorem 3. For any algorithm A € C, R, > —3-+ -:T = 1.61°.

Proof. We shall exhibit three kinds of lists L with arbitrarily large OPT(L ), and show that the average

value of '6%%(’1),—) for these three kinds of lists is at least 5+ - Each of these three kinds of lists will

be of the form L =L,L,L; where L,==(uy, u,..4,), Ly={vy,vs..,v) and

M
Ly =(t, ts ..., try). Moreover, we will always have u; + v; + E"’, == 1. Hence, the packing in
=1

which each bin contains a u; piece, a v; piece, and M ¢, pieces is an optimal packing, and so
OPT(L) = n.
Throughout the proof, we let n be a positive integer that is a multiple of 6m (for simplicity, we

(a/2-y)? (v-1/3)
(M + 1)'“” (M + l)2 )

assume that m is rational), M = l—% , and ¢ be such that 0 < ¢ < min

Instance 1. Let

Y

]
-
+

and

Cleatly, u, € I,, v; € I, and ¢; € I,.

Now consider the packing produced by algorithm 4. By rules R1 to R 3 imposed on the algorithms
in class C, this packing consists of

n bins, each containing 1 u, piece,
at least —;— bins containing v; pieces,

and

at least bins containing ¢; pieces.

1/2 - g
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Hence

A(L)>n+ -g-+ >(2-y)n

Since OPT(L ) = n_can be arbitrarily large, we have
Ry 22-y ()

Instance 2. Let

and

Clearly, u; € I, v; € I, and {; € I,.

Now consider the packing produced by algorithm 4. This packing consists of

L [l - l-] bins, each containing 2 v; pieces,
2 m
_::n— bins, each containing 1 v; piece (and may be 1 u; piece),

at least n [l - -'ln—] bins, each containing 1 u; piece alone,

and

at least —;— bins containing ¢; pieces.

Hence
n 1 n 1 n 5 1
w2 22 2o afi-2)e 2o 5],
Since OPT(L) = n can be arbitrarily large, we have

5 1
RAZ 3_2"" (2)

Instance 3. Let




M
y=1-y+ -2—6,
1 M
v,=3+ 2(,
and

Clearly, u;, €I, v, € I,, and ¢; € I,.

Now consider the packing produced by algorithm 4. This packing consists of

n bins, each containing 1 u; piece,

—;- [1 - —:T] bins, each containing 2 v; pieces,

% bins, each containing 1 v; piece,

and
at Jeast —';—tl— bins containing ¢; pieces.
=
Hence
1 n nM 7 1
> 2ho= U8 L L
A(L)_n+2[l m]+m+ i _>_[6+y+2m n.
y-1/3]
Since OPT(L) = n can be arbitrarily large, we have
7 1
> - —_
Ry 2 sVt om (3)
Adding (1), (2), and (3), we have
29
> 2
GRA =% )
or
3 1
R, 2> 2 . 0

If the algorithm A in Theorem 2 uses Next-Fit to pack /, -pieces, then we can get the improved

result R, > %4- % by modifying the instances 1, 2, and 3 in the proof as follows. In L, introduce




-z&

pieces whose sizes are of the form ke for some appropriate positive integer k, at regular frequency. For

example, in Instance 2, every 6M — 1 ¢; pieces will be followed by a piece of size (6M + 1)e. Since € can

o 3 M 1
be taken to be arbitrarily small, we have OPT(L)=1n + 1. But A(L) > [? + m - —2;]7:

§. Conclusions

We have presented a new on-line algorithm, the Modified Harmonic Algorithm, which has a better
asymptotic performance ratio than any previously known on-line algorithm. Moreover, this algorithm is a
linear-time algorithm. It seems likely that a better algorithm could be constructed if the linear time con-

straint were relaxed.

It is argued in [LL83] that any linear-time, constant-space on-line algorithm has a performance ratio
of at least 1.692... . We relaxed the constant space constraint and achieved 1.61(561)°. In the previous
section we described a class of linear-time on-line algorithms which have a performance ratio of at least

1.61°. It seems quite likely that no linear-time on-line algorithm can do better.

Finally, we observe that our algorithm leads to improved on-line algorithms for packing in two-
dimensions. For packing rectangles in a strip, we can devise a shelf algorithm similar to those in [BS83].
By choosing appropriate shelf heights, we can obtain a performance ratio arbitrarily close to Ryy. We
can also devise an on-line algorithm for the problem of packing rectangies in finite two-dimensional bins
discussed in [CGJ82]. We believe that our on-line algorithm for this problem will have a performance

ratio Ryp®. These will be discussed in more detail in (R84].
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